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Abstract - Analysis of genetic code elements by
matrix methods were taken from the theory of digital
communication and of noise immunity signals. In this
paper we use matrix approach to show that the
degeneracy of the vertebrate mitochondrial code is
agreed with the 8-dimensional algebra, which is
unknown in modern mathematical natural science.
This algebra allows one to reveal hidden peculiarities
of the structure and evolution of the genetic code. We
propose a new algebraic system for investigations in
bioinformatics and mathematical biology including
new approaches for the problem of noise immunity
and classification of genetic molecules.

Keywords: Matrix genetics, genetic code, bipolar
algebra.

1. Introduction

The history of science knows ideas about a
special mathematics of living matter. For example, V.
Vernadskiy (1965) [16] has put forward a hypothesis
about a non-Euclidean geometry which dictates
structural specifics of living matter. But how can one
search such a general geometry of biological
organisms if biological forms are so diverse? The fact
that all biological organisms share the same
molecular bases of the genetic code has provided a
great unification of biological objects. Owning to this
fact one may suggest that a special mathematics of
living matter can be solved if the science will
understand mathematical bases of the genetic code.
Recent advances in bioinformatics have even led to a
new definition of life: “Life is a partnership between
genes and mathematics” (Stewart, 1999) [14].

What kind of mathematics dose a genetic code
consist with in partner relations and define the
structure and properties of living matter? This paper
presents data about a 8-dimensional matrix algebra
which is a candidate for a role of such genetic

mathematics (first of all, in questions of the
degeneracy of the genetic code). A discovery of deep
connections of the genetic code with a
multidimensional numeric system and its matrix
algebras is described. These data are obtained on the
basis of matrix approach to ensembles of molecular
elements of the genetic code.

2. The Kronecker Family of
Matrices of the Genetic Code

The mathematical theory of discrete signals uses
Kronecker families of Hadamard matrices (Ahmed,
& Rao, 1975) [1]: Hpu=[1 1; -1 11®, where (n)
means the integer Kronecker power. By analogy we
use the Kronecker family of matrix presentations of
the genetic code:

PP =[C A;U G]®, (1)

where C, A, U/T, G are the letters of the genetic
alphabet (cytosine, adenine, uracil/thymine, guanine).
The third Kronecker power of the kernel alg; abetical
matrix P = [C A; U G] gives the matrix P® = [C A;
U G]? of the 64 triplets in a certain succession:

CCC | CCA | CAC |CAAJACC]ACA| AAC | AAA
CCU | CCG | CAU |CAGIACUTACG| AAU | AAG
CUC | CUA | CGC |CGA |AUC|AUA| AGC | AGA
v=|c A|; ="cuu | cuc | cou |cecfavulAavG| AGu | AGG

VG UCC | UCA | UAC |UAAJGCC[GCA| GAC | GAA
UCU | UCG | VAU [UAG[GCU{GCG| GAU | GAG

UUC | uuA | ucc [UGA|GUC[GUA| GGC | GGA
! Yuu | WG | UGU |UGGJGUL|GUG| GGU | GGG

Fig. 1. The first genetic matrices PDand P® =[C A;
U GJ® of the Kronecker family




The genetic matrix [C A; U G]® on Figure 1
contains 16 sub-quadrants (2x2). Each of these sub-
quadrants contains a subfamily of 4 NN-triplets with
the same letters on their first two positions. An
example of such subfamily is the set of four triplets
CAC, CAA, CAU, and CAG with the same two
letters CA on their first two positions.

The modern genetics has many dialects of the
genetic code (see NCBI'’s website
http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprint
ge.cgi). The vertebrate mitochondria genetic code is
considered as the most ancient and the most
symmetrical code among these dialects (Frank-
Kamenetskiy, 1988) [3]. This code has 8 subfamilies
of NN-triplets, the code meaning of which is
determined only by two first positions in each of
these triplets (see Figure 2) whose meaning does not
depend on the third position. We name the triplets,
which belong to such “two-position” subfamilies of
NN-triplets, as “black” triplets). This code has other
8 subfamilies of NN-triplets as well, the code
meaning of which is determined by all its three
positions whose meaning depends on the third
position. We name the triplets, which belong to such
“three-position” subfamilies of NN-triplets, as
“white” triplets). A mosaic of a disposition of the
black and white triplets in the genetic matrix [CA; U
G]® reflects the specificity of the degeneracy of this
basic dialect of the genetic code. It is unexpected
phenomenological fact that these black and white
triplets are disposed symmetrically in the matrix [C
A; U GI]® which is constructed formally without
taking into account the data about the degeneracy of
the genetic code (Figure 2). Really, the corresponding
black-and-white mosaic (Figure 2) has the following
symmetric features:

o The left and right halves of the matrix mosaic
are mirror-anti-symmetric to each other in its
colours: any pair of cells, disposed by mirror-
symmetrical manner in these halves, possesses
the opposite colours.

® The black-and-white matrix mosaic has a
symmetric figure of a diagonal cross: diagonal
quadrants of the matrix are equivalent to each
other from the viewpoint of their mosaic.

o The genomatrix [C A; U G]® consists of the
four pairs of neighbour rows with even and
odd numeration numbers in each pair: 0-1, 2-
3, 4-5, 6-7. The rows of each pair are
equivalent to each other from the viewpoint of
a disposition of the same amino acids in their
appropriate cells.

¢ Mosaics of all rows have a meander-line
character, which is connected with
Rademacher functions from the theory of
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discrete signals processing.

Fig. 2. The representation of the genomatrix [C A; U
G]® for the case of the vertebrate mitochondrial
genetic code. The matrix contains 64 triplets and 20
amino acids with their traditional abbreviations. Stop-
codons are marked as_“Stop”.

This symmetrical character of the degeneracy of
the genetic code, which is presented by the matrix
mosaic, is the key for many secrets of the genetic
code. Let us investigate two initial questions: 1) what
kind of mathematics has partnership relations with
such mosaic matrix of the genetic code? In other
words, whether is it possible to find the substantial
mathematical justification to such a choice of nature?
2) Whether is this character of the degeneracy of the
genetic code accidental (F. Crick (1968) [2] has
stated a hypothesis of "the frozen case”, ie. an
accidental character of this degeneracy)?

This alphabetic algorithm of digitization of 64
triplets is based on utilizing the two following binary-
oppositional attributes of the genetic letters A C, G,
U/T: “purine or pyrimidine” and *“2 or 3” hydrogen
bonds. It uses also the famous thesis of molecular
genetics that different positions inside triplets have
different code meanings (Konopelchenko, & Rumer,
1975) [9]. In view of this “alphabetic” algorithm, the
transformation of the genomatrix [C A; U G|®into
the matrix YY; (Figure 3) is not an abstract and
arbitrary action at all, but such a transformation can
be utilized by bio-computer systems of organisms
materially. By this alphabetic algorithm each triplet is
read in the following way:

® Two first positions of each triplet are filled
out by the symbol “o” instead of the
complementary letters C and G on these
positions and by the symbol “B” instead of
the complementary letters A and U
correspondingly;
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®  The third position of each triplet is filled out
by the symbol “y” instead of the pyrimidine
(C or U) on this position and by the symbol
“6” instead of the purine (A or G
correspondingly;

o The triplets, which have the letters C or G in
their first position, receive the sign “-“ in
those cases only for which their second
position is occupied by the letter A. The
triplets, which have the letters A or U on
their first position, receive the sign “+” in
those cases only for which their second
positions is occupied by the letter C.

For example, the triplet CAG receives the
symbol “-aBd”, because its first letter C is
symbolized by “a”, its second letter A is symbolized
by “B”, and its third letter G is symbolized by “5”.
This triplet possesses the sign “-” because its first
position has the letter C and its second position has
the letter A. One can see that this algorithm recodes
all triplets from the traditional alphabet C, A, U, G
into the new alphabet a, B, v, 8. In the result, each
triplet receives one of the following 8 expressions:
a0y = Xo, 00 = x1, APy = xz, aBS = x3, Poty = xs, Bod =
xs, BBy = x¢, PBO = x; (Figure 3). We will suppose that
the symbols “a”, “B”, “y”, “5” are real numbers. This
algorithm transforms the initial symbolic matrix [C
A; U G](3) into the numeric matrix Y¥; with the 8
coordinates xo, x1, X3, X3, Xs, Xs, Xg, X;. We shall name
these matrix components xo, xy,..., x;, which are real
numbers, as the “Y¥-coordinates”.

0 1 2 3 4 5 6 7
CAC | CAA AAC | AAA
-upy | -opd a0 | BBy | -BBO
X3 =X: $L ] X X7
CAU | CAG \ | AAU | AAG
-efy [ -upd > | BBy | -BBS
) =X¢ =X7

=X; -X3 g S
3 AUC | AUA AGC | AGA

-Bpy | -BBS oy | -Pad

X5 X7 ~X4 -Xs

AUU | AUG | AGU | AGG
PPy | BB | oy | -Bus

3 ~X7 X4 =Xs
UAC | UAA LGCA ] GAC | GAA
| BBy | -BBS : | -afy | -afd
o -Xg X7 = .73 X3
UAU | UAG GG | GAU | GAG
BBy | -BBS pwoo. | ey | -oBd
o % | m ¢ x| X
UUC | UUA | UGC | UGA R Giic A 1 6GC | a6
Ppy | -BBS | -Poy | pad i e
X X7 Xy Xs 10 L5 &
UUU | UUG | UGU | UGG Gt
BBy | -BBS | -Boy | -ud i [ aps .
X6 .x; -xi =X5 5 X S s

0 [1 J2 |3 |4 |5 (|6 |7
X2 | -X3 ~X6 ] X7
=X2 | X3 =X6 | X7
X6 | X7 | X4 | ~X5
YY; 8= X6 | X7 | =X4 | -X5
X6 | X7 ~X2 | X3
X6 | X7 g-x; ~X3

X6 | X7 ] X4 | ~X5
~Xg | =X7 | =X4 | ~X5

Fig. 3. The result of the algorithmic transformation of
64 triplets in the genomatrix [C A; U G]® into the
numeric coordinates X, X,, ..., Xy, which are based on
the four symbols “0”, “B”, “y”, “8”. The bottom
matrix YYs has only the numeric coordinates from
the upper matrix. Its black (white) cells contain
positive (negative) values of the YY-coordinates.
Numeration of columns is shown.

3. The Analysis of the Algebraic
Properties of the Matrix YY;

A decomposition of the 8-parametric matrix YY,
(Figure 3) leads to its presentation as a sum of the 8
basic matrices, each of which is connected with one
of the coordinates xy, x1, x,, X3, Xs, Xs, Xs, X7. Let us
symbolize any basic matrix, which is related to any
of YY-coordinates xg, x,, x4, x5 with even indexes, by
the symbol f, (where “f” is the first letter of the word
“female” and £= 0, 2, 4, 6). And let us symbolize any
matrix, which is related to any of YY-coordinates X1,
X3, Xs, X7 With odd indexes, by the symbol m, (where
“m” is the first letter of the word “male” and s = 1,3,
5, 7). In this case one can present the matrix YY; by
the expression (2),

YYg=
Xo* gty * My oy *hxs ¥ Myt * £t *mgtxg b, *my

¢))

The important and unexpected fact is that the set
of these 8 basic matrices f, my, f,, m;, fy, ms, {5, m;
forms the closed set relative to multiplications: a
multiplication between any two matrices from this set
generates a matrix from this set again. The table on
Figure 4 presents the results of multiplications among
these 8 matrices. The result of multiplying any two

- basic elements, which are taken from the left column

and the upper row, is shown in the cell on the
intersection of its row and column (for example, in
accordance with this multiplication table £,*mg = -
m7).
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my f‘_ m; )7 ms fe m
fo fo m; f m; ) mg f, my
m, fo | my f; m £y mg fs my

| £ £ | m s |omy | -6 |-m fy mg
m; f my o | -my | -fs | -my fa ms
fs [ mg fs my fo my £ m;
ns fy m fo | my fo my f; my |
fs f |_my - fs - I -1 =ty fo m
my f‘ myz = f‘ - Mg - f; - i 47 i1}

Fig. 4. The multiplication table of the basic matrices
fo, my, fz, ms, f4, ms, f6’ m; of the matrix YYg from
Figures 3 and equatoin (2). :

The multiplication table on Figure 4 defines the
genetic 8-dimensional algebra YY;. Multiplication of
any two members of the octet algebra YY; generates a
new member of the same algebra. This situation is
similar to the situation of real numbers: (or of
complex numbers, or of hypercomplex numbers)
when multiplication of any two members of the
numeric system generates a new member of the same
numerical system. In other words, the expression
YYs=xo*fo+x1*m1+x2*fz+x3*m3+x4*f4+x5*m5+x6*f6
+x7*my is some kind of 8-dimensional numbers
(“octet genonumber”). We mark this algebra and
these octet genonumbers by the same symbol YY,
accordingly.

One should pay special attention to the cells on
the main diagonal of the multiplication table (Figure
4). These cells contain squares of the basic elements.
In cases of hypercomplex numbers these diagonal
cells contain elements “t1” typically. In our case
these diagonal cells contain no real units at all but all
diagonal cells are occupied by elements “+fy” and
“tm,”. Thereby the set of the 8 basic matrices fp, m,,
f2, ms, £y, mg, f5, my is divided into two equal subsets
by criterion of their squares. The first subset consists
of elements with the even indexes: fo, £, £, £5. The
squares of members of this fp-subset are equal to £f,
always. The second subset consists of elements with
the odd indexes: m;, m;, ms, m;. The squares of
members of this my-subset are equal to =m; always.

The basic element f, possesses all properties of the
real unit in relation to the members of the fg-subset:
£y’ = fo, fo*fi=fy* =y, f*f=f*o=f,, fo*fe=f o=f.
But the element fy does not possess the commutative
property of real unit in relation to the members of the
my-subset: fo*m, # my*fy, where p = 1,3,5,7. For this
reason fy is named “quasi-real unit from the fi-
subset”,

The basic element m; possesses all properties of
the real unit in relatlon to the members of the my-
subset: m;*=m;, m;*my=m;*m;=ms,
m*ms=ms*m;=ms;, m;*m;=m;*m;=m,;. But the
element m; does not possess the commutative
property of real unit in relation to the members of the

fo-subset: my*f; # f,*my, where & = 0,2,4,6. For this
reason my is named “quasi-real unit from the m,-
subset™.

The principle “even-odd” exists in this algebra
YYs. Really all members of the fy-subset and their
coordinates x, x5, x4, x¢ have even indexes and they
are disposed in columns with the even numbers 0, 2,
4, 6 in the matrix YY; and in its multiplication table
as well. All members of the my;-subset and their
coordinates x;, x3, x5, x; have the odd indexes and
they are disposed in columns with the odd numbers 1,
3, 5, 7 in the matrix YY; (Figure 3) and in its
multiplication table (Figure 4) as well. In accordarice
with Pythagorean and Ancient-Chinese traditions, all
even numbers are named “female” numbers or Yin-

numbers, and all odd numbers are named “male”

numbers or Yang-numbers. From the viewpoint of
this tradition, the elements f,, £, fs, fs, X0, X5, X4, X
with the even indexes play the role of “female”
elements or Yin-elements, and the elements m;, m;,
ms, My, X, X3, X5, X7 with the odd indexes play the
role of “male” or Yang-elements. We name this
algebra Y'Y as bipolar algebra. But it can be named
also as the octet Yin-Yang-algebra, or the even-odd-
algebra, or the bisex-algebra. Such algebra, which
possesses two quasi-real units and no one real unit,
gives new effective possibilities to model binary
oppositions in biological objects at different levels,
including sets of triplets, amino acids, male and
female gametal cells, male and female chromosomes,
etc.

In comparison with hypercomplex numbers,
which have the real unit in the set of their basic
elements, bipolar numbers YYj are the new category
of numbers in the mathematical natural sciences in
principle. In our view, knowledge of this category of
numbers is necessary for deep understanding of
biological phenomena, and, perhaps, it will be useful
for mathematical natural sciences in the whole.
Mathematical theory of bipolar numbers gives new
formal and conceptual apparatis to model
phenomena of reproduction and self-organization in
living nature,

It can be demonstrated easily that bipolar algebras
are the special generalization of the algebras of
hypercomplex numbers in the form of “double-
hypercomplex” numbers. Bipolar numbers become
the appropriate hypercomplex numbers in those cases
when all their female (or male) coordinates are equal
to zero. Traditional hypercomplex numbers can be
represented as a “mono-polar” half of appropriate
bipolar numbers. The algorithm of such
generalization is described in (Petoukhov, 2008a,b;
Petoukhov & He, 2009) [12, 13, 14]. We denote
bipolar numbers by double letters (for example, YY)
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to distinguish them from traditional (complex and
hypercomplex) numbers.

If all male coordinates are equal to 0 (x,= x, = X5=
x7 = 0), the bipolar numbers YY; become the Yin-

- genoquaternions Gy = xo*fy +x,*f; +x,*f +xg*f. If all

female coordinates are equal to 0 (xo= x, = x; = x4 =
0), the numbers YYz; become the Yang-
genoquaternions G = x1*my+x;*my+xs*mg+ -+x;,*m,.
These genetic quaternions G; and G,, have the
identical multiplication tables, which differ from the
multiplication table of Hamilton quaternions
(Petoukhov, 2008a,b; Petoukhov & He, 2009) [12,
13, 14]. Each of these genoquaternions corresponds
to a case of an anisotropic space that provokes
heuristic associations with anisotropic features of
biological phenomena. Taking these facts into
account, the octet genonumbers Y¥; can be named
“the double genetic quaternions”. It causes heuristic
associations with a double helix of DNA, which is
the bearer of genetic information. Just as the structure
of three-dimensional physical space corresponds to
the algebra of quaternions by Hamilton, so the
structure of the genetic code corresponds to the
algebra of the double genoquaternions.

4. The Structural Analogies
Between the Genomatrix and the
Bipolar Matrix YY;

The main interest of bioinformatics to the octet
bipolar algebra is connected with a possibility of its

 use as an adequate model of the structure of the

genetic code. This possibility depends on structural

coincidences between the bipolar matrix YY; and the

genetic matrix [C A; G U]®. A list of such non-
trivial coincidences includes the following ones:

1. The first coincidence: The black-and-white
mosaics of the bipolar matrix YY; and the
genetic matrix [C A; G U]® are identical. (By
an unknown reason, nature has divided the set of
the 64 genetic triplets into two subset of 32 black
triplets and 32 white triplets, which are disposed
in the cells of 32 positive coordinates and 32
negative coordinates of the bipolar matrix YYy).

2. The second coincidence: In the bipolar matrix
YYs, the pairs of the adjacent rows 0-1, 2-3, 4-5,
6-7 are identical to each other by the assortment
and the disposition of numeric coordinates xq, x;,
X2, x3, X4, X5, X6, X7. In the genetic matrix [C A; G
U]®, the same pairs of adjacent rows 0-1, 2-3, 4-
5, 6-7 are identical each to each other by the
assortment and the disposition of amino acids
and stop-codons.

3. The third coincidence: In the bipolar matrix YY;,
the female coordinates x,, x,, x4, x5 Occupy the
columns with the even numbers 0, 2, 4, 6, and
the male coordinates x;, x3, xs, x; occupy the
columns with the odd numbers 1, 3, 5, 7. In the
genetic matrix [C A; G UJ®, the triplets with
pyrimidine C or U on their third positions
occupy the columns with the even numbers 0, 2,
4, 6; and the triplets with purine A or G on their
third positions occupy the columns with the odd
numbers 1,3, 5, 7.

4. The fourth coincidence: In the blpolar matrix
YY;, one half of the quantity of the numeric
coordinates (xo, x;, X, x3) exists in the two
quadrants along the main diagonal only; the
second half of the numeric coordinates (x4, xs, X,
Xx7) exists in the two quadrants along the second
d1a§onal only. In the genetic matrix [C A; G

, one half of kinds of amino acids exists in
the two quadrants along the main diagonal only

(Ala, Arg, Asp, Gln, Glu, Gly, His, Leu, Pro,

Val); the second half of kinds of amino acids

exists in the two quadrants along the second

diagonal only (Asn, Cys, lle, Lys, Met, Phe,

Ser,Thr, Trp, Tyr).

5. The fifth coincidence: In the bipolar matrix YY,
those six kinds of different numeric matrices are
generated by means of some kinds of
permutations of columns and rows of this matrix,
each of which possesses its own kind of the 8-
dimensional bipolar algebra.

In the genetic matrix [C A; G U]®, the same six
kinds of permutations of columns and rows fit the six
possible kinds of permutations of positions inside the
64 triplets (1-2-3, 2-3-1, 3-1-2, 3-2-1, 2-1-3, 1-3-2),
which lead to the new genomatrices with symmetric
and interrelated mosaics (this fifth coincidence is
explained additionally in the works (Petoukhov,
2008; Petoukhov & He, 2009).

One should note that the black cells of the
genomatrix [C A; U G]® contain the black NN-
triplets, which encode the 8 high-degeneracy amino
acids(Ala, Arg, Gly, Leu, Pro, Ser, Thr, Val), each of
which is encoded by 4 triplets or more in the
considered basic dialect of the genetic code. The
white cells of this genomatrix contain the white NN-
triplets, which encode the 12 low-degeneracy amino
acids (Asn, Asp, Cys, Gln, Glu, His, Ile, Lys, Met,
Phe, Trp, Tyr), each of which is encoded by 3 triplets
or less correspondingly.

The described structural coincidences of two
matrices YYgand [C A; U G]® allow one to consider
the octet bipolar algebra YY; as the adequate model
of the structure of the genetic code. One can postulate
such an algebraic model and then deduce some
peculiarities of the genetic code from this model.

In




These results of the comparison analysis give the
following answer to the question of mysterious
principles of the degeneracy of the vertebrate
mitochondrial genetic code from the viewpoint of the
proposed algebraic model. The matrix disposition of
the 20 amino acids and the stop-signals is determined
by algebraic principles of the matrix disposition of
the YY-coordinates. Moreover the disposition of the
32 black triplets-and the high-degeneracy amino acids
in this basic dialect of the genetic code is determined
by the disposition of the YY-coordinates with the
sign “+”. And the disposition of the 32 white triplets,
the low-degeneracy amino acids and stop-signals is
determined by the disposition of the YY-coordinates
with the sign “-”. One can recall here that the division
of the set of 20 amino acids into the two sub-sets of
the 8 high-degeneracy amino acids and the 12 low-
degeneracy amino acids is the invariant rule of all the
dialects of the genetic code practically (Petoukhov,
2005). The described structural coincidences between
both matrices do not exhaust the interconnections
between the genetic code systems and the bipolar
matrices.

5. Matrix Genetics and
Applications of the Genetic Bipolar
Algebra

The genetic systems from the viewpoint of
matrix analysis are united under the general name
“matrix genetics”. This new scientific field is
developed intensively and it has interesting results
already in works (He, 2001, 2003a, 2003b; He,
Petoukhov, 2007; He, Petoukhov, Ricci, 2004;
Petoukhov, 2001, 2005, 2008a, 2008b; Petoukhov,
He, 2009; etc.) [4, 5,6, 7, 8, 10, 11, 12, 13, 14].

The discovery of the genetic bipolar algebra
gives new possibilities for structural analysis of
genetic systems. For example this matrix algebra
allows revealing of internal structure in the set of 20
amino acids: this set appears to be structured by
means of splitting into subsets of "female" amino
acids, "male" amino acids and "androgynous" amino
acids from the viewpoint of the bipolar matrix YYs
(Fig. 2). Amino acid is named accordingly as a
female amino acid if it corresponds only to YY-
coordinates with even indexes xg, X, X4, X¢ (that are
Yin-coordinates) in the bipolar matrix YY;. One can
see from Figure 2 that female amino acids are Asn,
Asp, Cys, His, Ile, Phe, Tyr. Amino acid is named
accordingly as a male amino acid if it corresponds
only to YY-coordinates with odd indexes xy, X3, Xs, X;
(that are Yang-coordinates) in the bipolar matrix

|nt! Conf. Bioinformatics and Computational Biology | BIOCOMP'10 |

YYs. The male amino acids are Glu, Lys, Met, Gln,
Trp. Amino acids is named as an androgynous if it
corresponds simultaneously to YY-coordinates with
even indexes and with odd indexes. The androgynous
amino acids are the 8 high-degeneracy acids Ala,
Arg, Gly, Pro, Thr, Val, Ser, Leu. The knowledge of
internal structure of the set of 20 amino acids is
useful for analysis of proteins structures and
evolution of dialects of the genetic code (Petoukhov,
2008a; Petoukhov, He, 2009) [12, 14]. For example,
all kinds of proteins can be classified as female, male
of androgynous proteins depend on the fact what kind
of amino acids (female, male or androgynous)
dominates in a protein. Specificity of interactions
between proteins of various sexual types is a new
interesting problem for investigations.

The analysis of evolution of dialects of the
genetic code from the viewpoint of the genetic
bipolar algebra demonstrates that this evolution is a
struggle between male and female beginnings, which
reminds of the social struggle between male and
female sexes (matriarchy and patriarchy, etc.). In a
course of evolution, the “female” amino acids begin
to occupy cells with the “male” amino acids in the
genomatrix [C A; U G]® (Figure 2) but male triplets
gain revenge in termination functions: they not only
encode all stop-signals in all dialects, but they
withdraw the start-codon function from female
triplets in some extent. One can think that two — male
and female — sexes of biological organisms have
arisen not from a “white space” but they have
predecessors at the molecular-genetic level
(Petoukhov & He, 2009) [14]. Plato had formulated
the famous statement about a congenital aspiration of
each person to look for the second half. From the
viewpoint of our “bisex” or bipolar conception,
which is based on the genetic bipolar algebra, Plato's
statement can be transferred into the world of those
congenital properties of genetic molecules which are
reflected in their search of their second halves.

One of interesting examples of such searching is
given by histones. In eukaryote cells, filaments of
DNA are coiled around nucleosomes, each of which
is a shank consisting of the histones of the four types:
H2A, H2B, H3 and H4. This set of four types is
divided by nature into the pairs of one-specific
histones. The histones H2A and H2B possess the
important possibility to create the pair just one with
another on the basis of their mutual revealing and
mutual “attraction” in a molecular bouillon (by
analogy with a male and a female individuals of one
species among macroscopic biological organisms).
Another pair consists of the histones H3 and H4,
which possess the similar possibility to create the
pairs just one with another on the analogical basis of
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their mutual revealing and mutual “attraction” in
molecular bouillon. Each nucleosome is formed in

accordance with the principle of the multi-level

recognition defined by the structures of the histones.
In the first step, the spiral domains cooperate among
themselves. As a result, pairs (dimers) arise: one pair
H3-H4 and two pairs H2A-H2B. In the second step,
two first dimers form the pair association of the
following level of complexity: the tetramer arises
with two pairs H3-H4. In the third step, this tetramer
forms a pair association of the higher level with two
pairs H2A-H2B. As a result, the octamer of the
histones arises (http://www.ncbi.nlm.nih.gov). All
these searches and copulations of one-specific
histones into pairs, and then into new pairs from
previous pairs occur in a molecular bouillon with a
huge bedlam of biological molecules of other kinds
and their splinters. It occurs despite of effects of
electric shielding and other noise circumstances
there. In our view, taking into account the described
facts, one can put forward the working hypothesis
about existence of "a sexual intermolecular
attraction" (or a "bipolar attraction") between genetic
one-specific elements as a new biophysical factor of
a quantum mechanical sense. This new hypothetical
factor or principle is presented, first of all, as an
explanation of molecular-genetic phenomena of
search the one-specific pair partner by multi-atomic
bio-molecules to create a specific pair in complex
conditions of multi-component bullion. The genetic
bipolar algebra can be wuseful to model and
investigate such a factor. This factor can have a force
character and/or information character. It does not
reject the existence of other known factors (for
example, interactions of electric charges and so
forth), but it is additional to them, Of course, it would
be wrong to extend an action of this factor of "a
sexual intermolecular attraction”, which is proposed
in connection with phenomena of assembly of pairs
of one-specific multi-atomic molecular elements
(multi-atomic quantum mechanical “modules™), into
the field of all aspects of molecular-genetic
organization.
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